Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity.
نویسندگان
چکیده
A novel and facile protocol for the rapid synthesis of flower-like Cu(2)O architectures is reported in the presence of ionic liquid 1-n-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM]BF(4)) with the assistance of microwave irradiation. The hierarchical structures are assembled from many thin nanosheets with tunable sizes by adjusting the amount of [BMIM]BF(4) in the reaction solution. Noticeably, the flower-like Cu(2)O architectures present a high surface area of 65.77 cm(2) g(-1) with a band gap of about 2.25 eV, and exhibit high and stable photochemical activity for the reduction of Cr(VI) to Cr(III) under visible light irradiation. A reasonable model of an absorption and diffusion-limited aggregation process is proposed for explaining the possible formation mechanism of the flower-like Cu(2)O. The approach described in this study provides a feasible and rapid method to synthesize flower-like Cu(2)O with a hierarchical structure that is ready for application in the fields of photocatalytic hazard pollutants.
منابع مشابه
Microwave Assisted Synthesis of Polycrystalline Flower-like ZincOxide Nanostructure Using Dicationic Ionic Liquid
In this paper, synthesis of the flower-like zinc oxide was performed using microwave assisted dicationic ionic liquid [mmp(im)2 ]Br2 . The polycrystalline flower-like zinc oxide nanostructure was obtained when a suitable mole ratio (ionic liquid /zinc acetate) and short duration microwave was used. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectra w...
متن کاملImidazolium Chloride Immobilized Fly Ash as a Heterogenized Organocatalyst for Esterification Reaction under Microwave Irradiation Heating
An efficient solventless one-pot procedure for the synthesis of imidazolium-based ionic liquid under microwave irradiation is described in which 1-methylimidazole was modified by organosilane (3-chloropropyl triethoxysilane). This ionic liquid 1-methyl-3-[(triethoxysilyl)propyl]imidazolium chloride (TMICl) is immobilized on Mechanically activated Fly Ash (MFA) by co-condensation method to d...
متن کاملMicrowave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation
In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...
متن کاملMicrowave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation
In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...
متن کاملMixture of Ionic Liquids as Novel Media for Green Synthesis of Diketopyrrolopyrrole Pigments
A green method for the synthesis of high-performance diketopyrrolopyrrole pigments using diethyl succinate in the presence of mixture of ionic liquids is reported. Although, alkaline condition is needed in the succinate ester route for synthesis of the pigments, in the present study, the replacement possibility of conventional organic base by mixture of BMIMOH and BMIMBF4 ionic liquids was inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 40 25 شماره
صفحات -
تاریخ انتشار 2011